42 research outputs found

    Client applications and Server Side docker for management of RNASeq and/or VariantSeq workflows and pipelines of the GPRO Suite

    Get PDF
    The GPRO suite is an in-progress bioinformatic project for -omic data analyses. As part of the continued growth of this project, we introduce a client side & server side solution for comparative transcriptomics and analysis of variants. The client side consists of two Java applications called "RNASeq" and "VariantSeq" to manage workflows for RNA-seq and Variant-seq analysis, respectively, based on the most common command line interface tools for each topic. Both applications are coupled with a Linux server infrastructure (named GPRO Server Side) that hosts all dependencies of each application (scripts, databases, and command line interface tools). Implementation of the server side requires a Linux operating system, PHP, SQL, Python, bash scripting, and third-party software. The GPRO Server Side can be deployed via a Docker container that can be installed in the user's PC using any operating system or on remote servers as a cloud solution. The two applications are available as desktop and cloud applications and provide two execution modes: a Step-by-Step mode enables each step of a workflow to be executed independently and a Pipeline mode allows all steps to be run sequentially. The two applications also feature an experimental support system called GENIE that consists of a virtual chatbot/assistant and a pipeline jobs panel coupled with an expert system. The chatbot can troubleshoot issues with the usage of each tool, the pipeline job panel provides information about the status of each task executed in the GPRO Server Side, and the expert provides the user with a potential recommendation to identify or fix failed analyses. The two applications and the GPRO Server Side combine the user-friendliness and security of client software with the efficiency of front-end & back-end solutions to manage command line interface software for RNA-seq and variant-seq analysis via interface environments

    Functional proteomics outlines the complexity of breast cancer molecular subtypes

    Get PDF
    Breast cancer is a heterogeneous disease comprising a variety of entities with various genetic backgrounds. Estrogen receptor-positive, human epidermal growth factor receptor 2-negative tumors typically have a favorable outcome; however, some patients eventually relapse, which suggests some heterogeneity within this category. In the present study, we used proteomics and miRNA profiling techniques to characterize a set of 102 either estrogen receptor-positive (ER+)/progesterone receptorpositive (PR+) or triple-negative formalin-fixed, paraffin-embedded breast tumors. Protein expressionbased probabilistic graphical models and flux balance analyses revealed that some ER+/PR+ samples had a protein expression profile similar to that of triple-negative samples and had a clinical outcome similar to those with triple-negative disease. This probabilistic graphical model-based classification had prognostic value in patients with luminal A breast cancer. This prognostic information was independent of that provided by standard genomic tests for breast cancer, such as MammaPrint, OncoType Dx and the 8-gene Score

    Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset

    Get PDF
    Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics

    PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics

    Get PDF
    With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer

    A Comprehensive Peptidome Profiling Technology for the Identification of Early Detection Biomarkers for Lung Adenocarcinoma

    Get PDF
    The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000–5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273–283, FIBA 5–16, and LBN 306–313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens

    Outcome Prediction in Pneumonia Induced ALI/ARDS by Clinical Features and Peptide Patterns of BALF Determined by Mass Spectrometry

    Get PDF
    BACKGROUND: Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. METHODOLOGY/PRINCIPAL FINDINGS: A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. CONCLUSIONS/SIGNIFICANCE: MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS

    Prediction of adjuvant chemotherapy response in triple negative breast cancer with discovery and targeted proteomics

    No full text
    BACKGROUND: Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancers and usually requires the administration of adjuvant chemotherapy after surgery but even with this treatment many patients still suffer from a relapse. The main objective of this study was to identify proteomics-based biomarkers that predict the response to standard adjuvant chemotherapy, so that patients at are not going to benefit from it can be offered therapeutic alternatives. METHODS: We analyzed the proteome of a retrospective series of formalin-fixed, paraffin-embedded TNBC tissue applying high-throughput label-free quantitative proteomics. We identified several protein signatures with predictive value, which were validated with quantitative targeted proteomics in an independent cohort of patients and further evaluated in publicly available transcriptomics data. RESULTS: Using univariate Cox analysis, a panel of 18 proteins was significantly associated with distant metastasis-free survival of patients (p<0.01). A reduced 5-protein profile with prognostic value was identified and its prediction performance was assessed in an independent targeted proteomics experiment and a publicly available transcriptomics dataset. Predictor P5 including peptides from proteins RAC2, RAB6A, BIEA and IPYR was the best performance protein combination in predicting relapse after adjuvant chemotherapy in TNBC patients. CONCLUSIONS: This study identified a protein combination signature that complements histopathological prognostic factors in TNBC treated with adjuvant chemotherapy. The protein signature can be used in paraffin-embedded samples, and after a prospective validation in independent series, it could be used as predictive clinical test in order to recommend participation in clinical trials or a more exhaustive follow-up
    corecore